viernes, 9 de marzo de 2012

Newton Raphson


Consideremos el problema de encontrar un número positivo x tal que cos(x) = x3. Podríamos tratar de encontrar el cero de f(x) = cos(x) - x3.
Sabemos que f '(x) = -sin(x) - 3x2. Ya que cos(x) ≤ 1 para todo x y x3 > 1 para x>1, deducimos que nuestro cero está entre 0 y 1. Comenzaremos probando con el valor inicial x0 = 0,5
\begin{matrix}
  x_1 & = & x_0 - \frac{f(x_0)}{f'(x_0)} & = & 0,5 - \frac{\cos(0,5) - 0,5^3}{-\sin(0,5) - 3 \times 0,5^2} & = & 1,112141637097 \\
  x_2 & = & x_1 - \frac{f(x_1)}{f'(x_1)} & & \vdots & = & \underline{0},909672693736 \\
  x_3 & & \vdots & & \vdots & = & \underline{0,86}7263818209 \\
  x_4 & & \vdots & & \vdots & = & \underline{0,86547}7135298 \\
  x_5 & & \vdots & & \vdots & = & \underline{0,8654740331}11 \\
  x_6 & & \vdots & & \vdots & = & \underline{0,865474033102}
\end{matrix}
Los dígitos correctos están subrayados. En particular, x6 es correcto para el número de decimales pedidos. Podemos ver que el número de dígitos correctos después de la coma se incrementa desde 2 (para x3) a 5 y 10, ilustando la convergencia cuadrática.

Falsa posicion





Esta es una de las formas del método de la falsa posición. Esta puede ponerse en una forma alternativa al separa los términos:


sumando y restando xu en el lado derecho:

Agrupando términos se obtiene:

o:

Esta es la fórmula de la falsa posición. El valor de xr calculado con la ecuación reemplazará, después, a cualquiera de los dos valores iniciales, xl o xu, y da un valor de la función con el mismo signo de f(xr). De esta manera, los valores xl y xu siempre encierran la verdadera raíz. El proceso se repite hasta que la aproximación a la raíz sea adecuada.